张学进




张学进
副教授
办公室地址:科学楼809室
办公室电话:025-83594683
Email: xuejinzh@nju.edu.cn
 


研究方向
纳米光子学,表面极化激元,近场光学,太赫兹光子学,压电超晶格
开设课程
光波导理论,近场光学
个人简介
2004年于南京大学获博士学位。2005至2011年先后在美国加州大学伯克利分校、北京大学、新加坡南洋理工大学、香港城市大学做博士后研究。2011年3月就职于南京大学。现为Applied Physics Letters等国际学术期刊审稿人。近年来的研究兴趣主要是单根半导体纳米线、纳米带的光学性能,并结合表面等离激元构成新型纳米光学器件,探索其新颖的光学性能。1,研究方向主要包括:纳米材料的表面增强效应,如增强发光、增强拉曼等;亚波长光波导和腔谐振行为;表面等离激元的增益传播现象;通信波段表面等离激元主动器件;太赫兹表面等离激元器件;压电超晶格中的光波与声波相耦合效应。2,阶段性研究成果主要有:理论并实验研究了表面等离激元增强的单根单晶半导体纳米带与纳米线的增强发光行为,致力于纳米材料的发光器件研制;将局域表面等离谐振与传播的表面等离激元之间的耦合效应产生的电场增强现象应用到表面增强拉曼领域;通过半导体量子阱结构中的电子-空穴这一能量渠道补偿表面等离激元的传播损耗,为通信波段器件的小型化、集成化提供了新的思路;系统研究了压电体超晶格结构中的声子以及声子极化激元;将压电超晶格引入表面等离激元领域,研究了人工声子-等离激元相耦合的表面极化激元,为太赫兹表面等离激元器件开拓了新途径。3,新近开展的研究方向有:石墨烯等离激元学(Graphene plasmonics);基于表面等离激元的太阳能电池器件 (Plasmonic photovoltaic devices)。4,正在承担以及上一结题项目:“基于亚波长结构实现高效发光器件的研究” (国家自然科学基金项目, 2013-2016); “光电功能晶体的结构、性能和制备过程研究-微结构光电功能材料及其新效应、新器件” (国家重大科学研究计划项目, 2010-2014);“半导体纳米线/带中的极化激元及其纳米光学器件的实现” (国家自然科学基金项目, 2008-2011)。
科研成果
文章:

1Nano-photonics (纳米光子学)

"Surface-Enhanced Emission from Single Semiconductor Nanoribbons"

X. J. Zhang, H. Tang, J. A. Huang, L. B. Luo, J. A. Zapien, and S. T. Lee

Nano Lett. 11, 4626 (2011).

"Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering"

Y. Zhao, X. J. Zhang, J. Ye, L. M. Chen, S. P. Lau, W. J. Zhang, and S. T. Lee

ACS Nano 5, 3027 (2011).

"Enhanced Raman scattering from vertical silicon nanowires array"

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. B. Luo, Y. K. Liu, J. A. Zapien, C. Surya, and S. T. Lee

Appl. Phys. Lett. 98, 183108 (2011).

“SERS on periodic arrays of coupled quadrate-holes and squares”

Y. M. Hou, J. Xu, X. J. Zhang, and D. P. Yu

Nanotechnology21, 195203 (2010).

“Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate”

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen

Plasmonics, 5, 105 (2010).

“Whispering gallery modes in single triangular ZnO nanorods”

X. Z. Zhang, X. J. Zhang, J. B. Xu, X. D. Shan, J. Xu, and D. P. Yu

Opt. Lett. 34, 2533 (2009).

“Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles”

C. L. Du, Y. M. You, X. J. Zhang, K. Johnson, and Z. X. Shen

Plasmonics 4, 217 (2009).

“Electrical and Photoresponse Properties of an Intramolecular p-n Homojunction in Single Phosphorus-Doped ZnO Nanowires”

P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. L. Wang, N. Wang, and D. P. Yu

Nano Lett. 9, 2513 (2009).

“Surface exciton-plasmon polariton enhanced light emission via integration of single semiconductor nanowires with metal nanostructures”

X. J. Zhang, P. W. Wang, X. Z. Zhang, J. Xu, and D. P. Yu

Nano Res. 2, 47 (2009).

2Surface polaritons (表面极化激元)

"Mimicing Surface Phonon Polaritons in Microwave Band Based on Ionic-type Phononic Crystal"

X. K. Hu, Y. Ming, X. J. Zhang, Y. Q. Lu, and Y. Y. Zhu

Appl. Phys. Lett. 101, 151109 (2012).

“Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells”

X. J. Zhang,Y. C. Li, T. Li, S. Y. Lee, C. G. Feng, L. B. Wang, and T. Mei

Opt. Lett. 35, 3075 (2010).

“Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases”

YZhangX. J. ZhangT. Mei, and M. Fiddy

Opt. Express 18, 12213 (2010).

“Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS”

L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan

Opt. Express 18, 1959 (2010).

3Near-field optics (近场光学)

“Surface plasmon converging and diverging properties modulated by polymer refractive structures on metal films”

D. G. Zhang, X. C.Yuan, J. Bu, G. H. Yuan, Q. Wang, J. Lin, X. J. Zhang, P. Wang, H. Ming, and T. Mei

Opt. Express 17, 11315 (2009).

“Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy”

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu

Appl. Phys. Lett. 93, 073306 (2008).

4THz photonics (太赫兹光子学)

"Carrier Dynamics in Si Nanowires Fabricated by Metal-Assisted Chemical Etching"

H. Tang, L. G. Zhu, L. Zhao, X. J. Zhang, J. Shan, and S. T. Lee

ACS Nano (accepted 2012).

“Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors”

X. J. Zhang, D. M. Wu, C. Sun, and X. Zhang

Phys. Rev. B 76, 085318 (2007).

5Piezoelectric superlattices (压电超晶格)

“Phonon-polaritons in quasiperiodic piezoelectric superlattices”

X. J. Zhang, Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, and S. N. Zhu

Appl. Phys. Lett. 85, 3531 (2004).

“Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices”

X. J. Zhang, R. Q. Zhu, J. Zhao, Y. F. Chen, and Y. Y. Zhu

Phys. Rev. B 69, 085118 (2004).

“New type of polariton in a piezoelectric superlattice”

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu,Y. F. Chen, S. N. Zhu, and N. B. Ming

Phys. Rev. Lett. 90,053903 (2003).

“Integrated switchable reflector based on periodically poled acoustic superlattice LiNbO3

X. J. Zhang, Y. Y. Zhu, Y. F. Chen, Z. L. Wan, Y. Q. Lu, and N. B. Ming

J. Phys. D: Appl. Phys. 35,1414 (2002).